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PROBLEM OF THE SYNTHESIS OF A COMPOSITE MATERIAL OF UNIDIMENSIONAL 

STRUCTURE WITH ASSIGNED CHARACTERISTICS 

A. G. Kolpakov and S. I. Rakin UDC 539.3 

A significant amount of attention is now being given to the development of composite 
materials with assigned properties. Here we present a solution of this problem in regard 
to the thermophysical and stiffness characteristics of composites with a unidimensional struc- 
ture (with the condition that the components have the same Poisson's ratios). 

By a composite material with a unidimensional structure we mean an inhomogeneous mate- 
rial with thermophysical and mechanical characteristics which are a function of a single space 
variable, such as x I. Composites constitute a special case of such materials. The character- 
istics of a composite composed of a large number of small components are rapidly oscillating 
functions with a characteristic magnitude of oscillation e ~ i (in the case of laminated com- 
posites, e is the characteristic thickness of the layers). As was shown in [1-5], at e + 0 
an inhomogeneous composite with a periodic structure can be regarded as a homogeneous material 
with so-called averaged [1-5] thermophysical and mechanical characteristics which at e ~ i 
are close to the thermomechanical behavior of the original material [1-6]. The averaged 
characteristics, describing the material from the macroscopic viewpoint, are determined by its 
its local (microscopic) characteristics. The question of determining averaged characteris- 
tics of composites from their local characteristics has been fully resolved by now [1-7]. Here 
we examine the inverse problem: through which averaged characteristics and in what manner can 
we impart a unidimensional structure to composites by controlling their local characteristics? 
The solution is obtained on the basis of the methods used in [8, 9] in regard to thermophysi- 
cal and stiffness characteristics. 

Let the composite material we are studying be locally isotropic and inhomogeneous, with 
a periodic structure. The characteristic size of the period ~ ~ i. We apply the following 
restriction to the types of composites for which our findings are valid: the materials used 
in the composite must have the same (or similar) Poisson's ratios. This condition is met, 
for example, by a composite based on metals (~ z 1/3) or polymers (~ z 0.4). The material 
characteristics of the composites being examined: c(xl/g) , a(xl/e ) are the local heat capac- 
ity and thermal conductivity; E(xl/e), A(xi/e) are the local Young's modulus and coefficient 
of linear expansion [the period of the functions c(t), a(t) E(t), A(t) is equal to unity]. At 
e § the solutions of the heat-conductionand strain problems for the composite approach [in 
the norm of the space L2(Q)] the solutions of the same problem for a homogeneous anisotropic 
material with averaged characteristics: 

heat capacity [2, 7] 

= <c>, ( 1 )  
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8 1 

where </>=-~- /(xl/e)dx1= /(t)dt is the mean for the period; 
0 0 

the thermal conductivity tensor [i, 2] 

Z~.= i/d/a>, ~22 =%33 - <a) ( Z )  

( t h e  t e n s o r  components no t  e x p l i c i t l y  i n d i c a t e d  a r e  equal  to  zero to  w i t h i n  the  known sym- 
met r ies ' ) ;  

the compliance tensor [7] 

\ " 

HIII1 
& 

I v 
H2222 = H3333 = <-~' Hn2~ = Hn33 = H~233 = -- <E> ' (3) 

1+~/ t \ .  I+~ I. 
HISI3=HI~n=--~--\T/~ H2s23= 2 <E>' 

the tensor of the coefficients of linear expansion [6] 

i + ~ 2v <EA> 
A n=~<A) i - v  <E>~ (4) 

A22 = A a s  _ <EA> <E>" 

Equations (i)-(4) establish the relationship between the averaged (macroscopic) and the 
local (microscopic) characteristics of composites with a unidimensional structure. In gen- 
eral, the distribution of local characteristics in composites may be quite different in char- 
acter from one case to another: continuous, piecewise-continuous, piecewise-constant (the 
latter occurs in laminated composites), etc. To cover such cases, we introduce the following 
set of functions: W {/(t) ~ L~([0, i]): i~(t) ~ L~([0, i]), and for any f(t) we find a number 
~(f) > 0 such that f(t) Z ~(f) for nearly all t ~ [01 I]}. 

The set W contains the above types of functions, which nearly exhausts the set of pos- 
sible distributions of local characteristics of composites. Thus, we will henceforth assume 
that the set of functions (c, a, E, A)(t) - the local characteristics of the composite - be- 
longs to the set W 4. Accordingly, Eqs. (1)-(4) give the mapping l:(c, a, E, A)~ W4-~R 18 
from the set of distribution of local characteristics onto the set of values of the averaged 
characteristics. We will use I(W 4) to designate the image of the set W 4 in the mapping I, 
I(W 4) = {x~16: there exists a set of funct/ons ~, a, E, A)(t)~W 4 such that I(c, a,E, A) = x}. 

The problem of designing a composite with a unidimensional structure and assigned aver- 
aged characteristics is formulated as follows: we want to have a material possessing a pre- 
scribed set of thermophysical and stiffness characteristics: c ~ ai%, /~jaz, Ai~. We need to do 
the following: i) determine whether or not a material with such characteristics can be created 
in the class of composites with a unidimensional structure; 2) if the first question is an- 
swered affirmatively, we need to determine the method by which such a material can be created. 
It is not hard to see that a material with a prescribed set of averaged characteristics can 
be created within the class of composites with a unidimensional structure only when (c ~ 0 aij, 
H~okz, A~)~I(Wa). This means that to solve the first problem, it is sufficient to give a de- 
scription of the set J(W~). The solution of the second problem reduces to the following: for 
each element x~l(W4), we need to indicate the method of construction of the set of functions 
(c, a, E, A)(t)~ W ~ - local characteristics of the composite - such that l(c, a, E, A) = x(i.e., 
we need to soive the synthesis problem in [8, 9] for the mapping I). 

Let us proceed to the solution of the stated problem. We note that Eqs. (i), (2) and 
(3), (4) are independent and that the averaged characteristics which they give are in one- 
to-one correspondence with functionals of the form 

1 I i I 

0 0 0 0 

[for (3), (4) u~(t) = E(t), u~(t) = A(t); Eqs. (i) and (2) include functionals of the first 
and second types]. By virtue of the foregoing, it will be sufficient to solve problems 1 and 
2 for the mapping J of the.set W ~ onto R ~ given by Eqs. (5). Let us obtain the solution of 
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this problem. Here, the functions (ul(t), uz(t))~l/V 2 will be regarded as the control, assigned 
on a segment with the ends t o = 0, t~ = i, and we will use the results in [8, 9]. During the 
course of the solution, we require the auxiliary set W~ = {/(t)~W: ](t)~ for nearly all 
t~ [0; I]}, ~>0 - is a parameter. It is obvious that I4f~W for any ~ > 0. 

It is easily seen that the image of the set W~ in the mapping J3:W2-+R 3, given by the 
first three functionals in 45), is Ja(W~) = {@, y, z) ~ R ~ : x>1- ~, I/z~ I/~, z~}. The 
image of the set W 2 with the same mapping is obtained by replacing $ by 0 and i/$ by ~. 

To calculate the image of the set W~ in the mapping J (5), first we examine the problem 
of minimization of the fourth functional in (5) with given values of the first three func- 
tionals: 

1 

u 1 ( t )  u ,  (t) d t  ~ inf (~); ( 6 )  
0 . . . . . .  

1 " 1 1 

j ' u l ( t ) d t = a  , S au~(t)~b, l'u2(t) d t=c ,  (7) 
0 0 0 

where a'> ~; l/a < b < l/~; c > ~ ;  

(u, (t), u, ( t ) )~  W~. (8) 

Problem (6)-(8) is a Lyapunov problem [9] with restrictions on the control in the form of 
inequalities [condition 48)]. In accordance with the maximum principle [9, p. 354], for its 
solution U(t) = (Ul(t), U24t)), if a solution exists, the Lagrangian K(u(t), k)= %ou,(t)u2(t ) ~- 
%,u!(t ) q-L2/ui(t ) ~-%S_u~(t) satisfies the following equality with the appropriate choice of La- 
grangian multipliers %0>~0, kl (i = I, 2, 3) 

K(U (t), ~,) = min K(u(t) ,  k) (9) 
u ~ W ~  

for nearly all t ~ [0, I]. We take ~0----- I, ~,---- %z----- '--~, %-,----0. Then the equality in (9) is 
achieved on functions taking values in the set V~---- {(z, y)~ R'~: ~ = ~, y~$ (any) or x~ 
(any), y = ~}. In paticular, the equality is satisfied on the function U(t) = (U1(t) , U2(t)) 
of the form 

{X at t~[O,H],  1~ at t ~ [ 0 ,  H], 
U~(t )= ~ at t ~ ( H , l ] ,  U2(t)= at t ~ ( H ,  tl, (10) 

where 0~I/~I; X, Y~. For the function (i0), Eqs. (7) can be satisfied by the selection 
of X, Y, and H. In fact, for U1(t) , U2(t) , given by (I0), Eqs. (7) are 

X l t  + ~(t - H ) =  a > L 
tI/X 4- (1 -- II)/~ = b ~ (l/a, t/~)., (11) 

~H + Y( l  - -  H) = c > ~ .  

From the  f i r s t  equa t ion  H = (a -- ~)/(X -- ~) ~ [0, 11. Having i n s e r t e d  t h i s  exp re s s ion  in to  the  
left side of the second equality in (ii), we see that it is (X- ~)/X(X- ~)+ (X- a)/~(X- ~). 
The values of the resulting function at X ~ (a, oo) cover the interval (I/a, I/~), so that :the 
first two equations in (ii) can be solved. The thirdequation canalways besatisfied byappro- 
priate selection of Y~. Thus, for the function U(t) = (U1(t), U2(t)), with the selection 
of X, Y, and H as solutions of system (Ii), the maximum principle (9) and conditions 47), (8) 
are satisfied. Also, l 0 > 0, and on the set W E ($ > 0) the integrands in (6), (7) are con- 
tinuous with respect to ul, u 2. Then Part 2 of the theorem in [9, p. 354] can be used. As .a 
result of this theorem, U(t) (i0) is the solution of problem 46)-(8). We find from (9) that 
the minimum value of the integral (6) is inf (~) = _$z ~_ at -'+- bE. 

Now we will show that with the satisfaction of conditions (7), (8), the integral (6) 
can take any value greater than inf ($). As a result, the image of the set W~ in the mapping 
J (5) contains the set Z~ ---- {(x, y, z, t) ~ /~+: x > ~, I/x < y < I/E, z > ~, t > _~2 ~_ x~-~ y~}. To 
achieve this, we introduce a special acicular variation V(t) of the function u(t)~ W{i'deter- 
mined by the formula 

Jui (t (a + 6)) - a t  t ~ [ 0 , i / ( l + 6 ) l ,  
V~(t)=[K+6-~/2 at t ~ ( t / ( t + 6 ) , t ] ,  i ,=1,2.  (12) 
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Here, or 6>~O are parameters satisfying the condition K~6*~/z>~ (i = 1,  2 ) ,  
by v i r t u e  o f  w h i c h  V ( t ) ~ W ~ .  I f  we u s e  (a, b, c) = Ja(u(t)) t o  d e s i g n a t e  v a l u e s  o f  t h e  f i r s t  
t h r e e  f u n c t i o n a l s  on t h e  f u n c t i o n  u ( t ) ~ W { ,  t h e n  

1 1 I. 
a dt b 

g~ (t) K ,  '~ 
o 0 

1 1 

V , ( t ) d t =  e -- +a~+b~ �9 ~ + K,6 T ,  V , ( t )  V~ (t) dt  = l + 
0 o 

+ K1Ki .  

( 1 3 )  

The right sides of (13) give the function r~,b, c, d, KI, K=, 6) with the variable 6, where 
a, b, c, d =--~q-a% + b~ -~- K!K a and KI, K 2 are parameters. It suffices to show that for any 
~, y, z, t) EZ~ the equation r(a, b, c, d, K1, K~, 6) = ~, y, z, t) is solvable at 6 = 60 > 0 through 
suitable selectionof u(t) EW~ and the quantities 6o, Kz, K 2. It is evident from (13) that 
the equation r@, b, c, d, KI, Ki, 5) = ~, y, z, t) is solvable relative to the parameters a, b, c, d 
in the form @, b, c, d) = r-~, y, z, t, KI, Ks, 6), where the function ~(x, y,z,t,K,,Ki, ~-+~, y, 
z, t) at 6 + 0 and is continuous with respect to 6. By virtue of ~, y, z, t)~Z~ and the 
openness of the set Z~,bew with a certain 6 = 6 o > 0, the point (a, b, c) belongs to the 
interior of the set J~(WK). Thus, for these (a, b, c), problem (6)-(8) is solvable. We take 
the solution of problem (6)-(8) as u(t) in (12), while we chooseK I and K 2 from the condition 
K16~ 1/2 >i, ~, K~8~ all >t ~, C >1 KI,  K~ >I O, K1K2 = d - -  (__~2 + a~ + b~) [ s i n c e  ~ ,  b, c, d) ~ Z~, 
beginning with a certain ~0 > 0, then at 6 < 60 the quantity d--(--~ 2 + a~+b~)>0, and the 
above system is solvable]. Consequently, for variation (12) of the function U(t) with the 
given choice ~0 > 0 and KI, Ki, the equality J(V(t)) = (x, y, z, t) is satisfied. Let us 
sum up the results obtained. 

Proposition i. a) The image of the set W 2 in the mapping J given by (5) coincides with 
the set Z := {(x, y, z, t)~R4: x>0, y>I/x~z>O, t>0} to within the interior points of the 
set; b) any point of the set Z can be obtained as the value of the mapping J (5) on a piece- 
wise-constant function taking no more than three different values. 

Case "a" of Proposition 1 is easily obtained by taking the limit at ~ + 0 from the previous 
results. As regards "b," we note that one method of constructing the function in it was pre- 
sented above [this is the variation (12) of the function U(t), determined from the solution 
of problem (6)-(8) with the corresponding selection of the values 60 > 0, K I, K2]. 

Let us proceed to the mechanical interpretation of the results obtained. Proposition 1 
makes it possible to describe the set of all possible averaged characteristics of composites 
with a unidimensional structure (problem i) and to establish a method for making (synthe- 
sizing) composites with any of the possible characteristics (problem 2). 

Proposition 2. a) Composites with a unidimensional periodic structure made of isotropic 
components can have the following averaged characteristics and cannot have other character- 
istics (to within the boundaries of the enumerated sets): 

heat capacity 

= X ( X > O ) ;  ( 1 4 )  

t h e  t h e r m a l  c o n d u c t i v i t y  t e n s o r  

~, = r ,  ~,a = ~ ,  = z (z > o, r > ~/z); (~5 )  

the Young's moduli E i, Poisson's ratios vij, and shear moduli Gij 

E1 = (1 --  v) z 
(t + v) (t - 2v) xy q- 2~ ~ ' Eg = Es = x, 

v (1 --  v) 
~lz = vla = (1 + ~;) (1 - -  2v) zy -t- 2v ~ ' ~'~ = v ,  

2 2x 
Gl~ = Gla = Cl +~)~-,t Gia = 1-7-~; 

(16) 

the tensor of the coefficients of linear expansion 
l + v  2": t A c j : A 3 s =  t 

(x > O, y > t /x ,  z > O, t > O). 
(17) 
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The variables X, Y, Z, x, y, z, t in (14)-(17) take independent values within the ranges in- 
dicated for them (the tensor components not explicitly indicated are equal to zero to within 
the known symmetries); b) any of the possible averaged characteristics indicated in (14)- 
(17) can be obtained as averaged characteristics of a laminated composite formed of no more 
than three different materials. Proposition 2 is a direct consequence of Proposition 1 and 
Eqs. (1)-(4). 

Note i. By a laminated composite we mean a composite with a unidimensional structure 
and having local characteristics which are piecewise-constant functions. This class of com- 
posites includes composites made by welding, gluing, layer-by-layer deposition, etc. for 
layers of homogeneous materials. It follows from Proposition 2 (case "b") that any possible 
averaged characteristics of composites with a unidimensional structure (particularly compo- 
sites with a continuous distribution of the local characteristics) can be obtained in the 
class of laminated composites - which are the easiest composites to make. 

Note 2. It is also possible to use more than three materials to make the composites, 
of course. However, the use of more than three materials will not expand the set of values 
of the averaged characteristics that can be achieved. 

Proceeding on the basis of Proposition 2, we propose the following procedure for design- 
ing composites with a unidimensional structure and prescribed averaged characteristics. 

i. We equate the corresponding left sides of Eqs. (14)-(17) to the required values of 
0 O .  0 0 0 the averaged characteristics c o , aij, E~, ~ij, G~j, Aij. We obtain a system of algebraic 

equations in the variables X, Y, Z, x, y, z, t. 

2. If the resulting system is not solvable or if the inequalities in (14)-(17) are not 
satisfied for its solution, then a material with the prescribed characteristics gen- 
erally cannot be made within the given class of composites. 

3. If the system is solvable and its solution satisfies the inequalities in (14)-(17), 
then a material with the required characteristics can be made within the class of 
composites with a unidimensional structure. To design such a material, it is suffi- 
cient to use the above-described methods [see Eqs. (6)-(13) and the accompanying 
text] to construct functions (e(t), a(t), E(t), A(t))c=--W 4 such that (e> = X, {i/a)= Y, (a) = 
Z, (E) = x, (I/E> = y, <A) = z,(EA) = t. The functions c(t), a(t), E(t), A(t), where t~ [0, 
i], give the distribution of the materials on the period of the composite (t = xl/ 
e). A composite with a unidimensional periodic structure (with the period e ~ i), 
having local characteristics c@,/e), a@i/e), E~I/~, A~,/~), will by virtue of (I)-(4) 
and Propositions 1 and 2 have the required averaged characteristics c o , ai~, E~, ~i~, 

At5 
Note  3. Wi th  t h e  c o n s t r u c t i o n  o f  t h e  f u n c t i o n s  c(t), a(t), E(t), A(t) by t h e  me thods  i n c o r p o -  

r a t e d  i n t o  ( 6 ) - ( 1 3 ) ,  we o b t a i n  a d e s i g n  o f  a c o m p o s i t e  made o f  t h r e e  m a t e r i a l s .  I t  can  be 
s e e n  f rom (10)  and (13)  t h a t  t h e  q u a n t i t i e s  ~t  = H / (1  + 60) , U2 = 1 - H / ( 1  + 6 0 ) ,  U3 = 6o/  
(1 + 60) a r e  e q u a l  t o  t h e  vo lume  c o n t e n t s  o f  t h e  m a t e r i a l s  wh ich  make up t h e  c o m p o s i t e .  

No te  4.  E q u a t i o n s  ( 6 ) - ( 1 3 )  g i v e  one o f  t h e  p o s s i b l e  me thods  o f  o b t a i n i n g  a s o l u t i o n  
( o b v i o u s l y  n o t  t h e  o n l y  me thod)  o f  t h e  p r o b l e m  o f  d e v e l o p i n g  a c o m p o s i t e  w i t h  a s s i g n e d  a v e r -  
aged  c h a r a c t e r i s t i c s .  A n o t h e r  me thod  o f  s o l v i n g  t h i s  p r o b l e m ,  f o l l o w i n g  f r o m  "b"  o f  P r o p o -  
s i t i o n  2, i s  l o o k i n g  f o r  t h e  s o l u t i o n  in  t h e  c l a s s  o f  c o m p o s i t e s  fo rmed  o f  a f i n i t e  number o f  
m a t e r i a l s  (no  l e s s  t h a n  t h r e e ) .  

An example is the existence of a composite having a negative coefficient of linear ex- 
pansion and made of components with positive coefficients of linear expansion (synthesis 
problem). 

We examined composites made of components having coefficients of linear expansion A(x!/ 
e) > 0 (i.e., components which expand with heating). Thanks to control over its local char- 
acteristics, the composite as a whole may be given properties which differ from the proper- 
ties of its components. In particular, we will show that it is possible to obtain a negative 
All (i.e., to obtain a composite which will contract in the direction of the Ox ! axis during 
heating). In accordance with the first equation of (17), the possible values of the averaged 
coefficient of linear expansion A11 are found from the equality 

t + v  2v t All=~C-__vz--~+ - - 7 ( x > O , z > O , t > O , y >  l/x). (18)  
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TABLE 1 

I Composite ~ Ei ' lOt~  Pa  Ai.10--6,  K - t  I t  t Art.10--6, K - I  

r idium t 52.8 6.5 0.t --3.79 
avar 2 13,5 0,2 0.9 

eflon t 9,8 2 2 0  0.t --49.0 
~tinax 2 t,2 20 0.9 

Iridium 
Tungsten 
Invar 3 

52.8 
39 
t3.5 

6.5 
4.5 
0.2 

005 I 0.05 
0.9 

--2.79 

It can be seen from (18) that the set of possible values of A11 is (-~, +~). Thus, a compo- 
site having a negative coefficient At1 can exist. 

Let us examine the problem of synthesizing a composite with a negative coefficient All. 
One method of solving this problem [on the basis of Eqs. (6)-(13)] was presented above; we 
will illustrate another method, mentioned in Note 4. In accordance with Proposition 2, all 
of the possible values of All can be obtained in the class of laminated composites made of 
no more than three materials. Let Ei, Ai, and H i be the Young's modulus, the coefficient of 
linear expansion, and the volume content of the i-th material (i = i, 2, 3). Then all pos- 
sible values of All are given by Eq. (18), in which we should put 

3 3 , 

x =  ~ EiHi, y =  ~ HJEi, 
~,=1 ~=1 

3 3 
z = ~  AiHi, t = ~  EiAiHi, 

i = l  i = l  

0 < ~ H i ~ < | ,  ~_j Hi = t, Ei, Ai > O. 
i=1 

The synthesis problem reduces in this case to a finite-dimensional problem. After its dis- 
cretization, we arrive at a finite sorting problem to search for the sets of values of E i, 
A i, H i (i = i, 2, 3) giving the required values of A1z. The sorting was done on a BESM-6 
computer. Working with the computer-generated solutions of the problem of synthesis of a 
composite with a negative coefficient A~I (the computer output on the order of I00 designs), 
we selected composites of actual materials having a negative coefficients A!l. These compo- 
sites are shown in Table i (the composite is represented as a two-layer composite when the 
characteristics of two layer coincide). 

We thank the participants in the OMDTT seminar at the M. A. Lavrent'ev Institute of 
Hydrodynamics of the Soviet Academy of Sciences, Siberian Branch, for this discussion of our 
work. 
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